
1

G53RDB:
Theory of Relational Databases

Lecture 14

Natasha Alechina
School of Computer Science & IT

nza@cs.nott.ac.uk

Lecture 17 2

Plan of the lecture

• More Datalog:
– Safe queries
– Datalog and relational algebra

• Recursive Datalog rules
• Semantics of recursive Datalog rules
• Problems with negation
• Stratified Datalog

Lecture 17 3

Datalog syntax: rules

• A Datalog rule is an expression of the form
R1 ← R2 AND … AND Rn

where n ≥ 1, R1 is a relational atom, and R2,…, Rn are
relational or arithmetic atoms, possibly preceded by NOT.

• R1 is called the head of the rule and R2,…, Rn the body of
the rule.

• R2,…, Rn are called subgoals.

Lecture 17 4

Example

• Suppose we have a relation Person over schema (Name,
Age, Address, Telephone). Then the following Datalog
rule will define a relation which contains names of people
aged over 18:

Adult(x) ← Person(x,y,z,u) AND y ≥ 18

Lecture 17 5

Datalog query

• A Datalog query is a finite set of Datalog rules
• If there is only one relation which appears as a head of a

rule in the query, the tuples in that relation are taken as the
answer to the query.

• For example,
Parent(x,y) ← Mother(x,y)
Parent(x,y) ← Father(x,y)

defines Parent relation (using relations Father and Mother)
• If there is more than one relation appearing as a head, one

of them is the main predicate to be defined and others are
auxiliary.

Lecture 17 6

Meaning of Datalog rules

• First approximation (non-recursive queries):
– take the values of variables which make the body of the

rule true (make each subgoal true; NOT R is true if R is
false)

– see what values the variables of the head take;
– add the resulting tuple to the predicate in the head of

the rule.

2

Lecture 17 7

Example with negation

• Suppose we have a relation Person over schema (Name,
Age, Address, Telephone).

Child(x) ← Person(x,y,z,u) AND NOT(y ≥ 18)
• We take all <name, age, addr, tel> in Person for which it is

also true that NOT(age ≥ 18), and add <name> to Child.
• NOT(age ≥ 18) is true if age ≥ 18 is false, so we add all

tuples where age < 18.

Lecture 17 8

Safe queries

• We want the result of a query to be a finite relation.
• To ensure this, the following safety condition is required:
every variable that appears anywhere in the rule must

appear in some non-negated relational subgoal.
• The reason for this is that infinitely many values may

satisfy an arithmetical subgoal (e.g. x > 0) and infinitely
many values are NOT in some finite table of a relation R.

Lecture 17 9

Questions

• Which of the following rules have safety violations:
– P(x,y) ← Q(x,y) AND NOT R(x,y)
– P(x,y) ← NOT Q(x,y) AND y = 10
– P(x,y) ← Q(x,z) AND NOT R(w,x,z) AND x < y
– P(x,y) ← Q(x,z) AND R(z,y) AND NOT Q(x,y)

Lecture 17 10

Questions

• Which tuples are in P?
P(x,y) ← Q(x,z) AND R(z,y) AND NOT Q(x,y)

given that:
Q contains tuples <a,b>, <a,c>
R contains tuples <b,c>, <c,a>

Lecture 17 11

Datalog and relational algebra

• Every relation definable in relational algebra is definable
in Datalog.

• Again we assume that we have a relational name (predicate
symbol) R for every basic relation R.

• Then for every operation of relational algebra, we show
how to write a corresponding Datalog query.

Lecture 17 12

Union

• Union of R and S:

U(x1,…,xn) ← R(x1,…,xn)
U(x1,…,xn) ← S(x1,…,xn)

3

Lecture 17 13

Difference

• Difference of R and S:

D(x1,…,xn) ← R(x1,…,xn) AND NOT S(x1,…,xn)

Lecture 17 14

Product

• Product of R and S:

P(x1,…,xn,y1,…,yk) ← R(x1,…,xn) AND S(y1,…,yk)

Lecture 17 15

Projection

• Suppose we want to project R on attributes x1,…,xn.

P(x1,…,xn) ← R(x1,…,xn,y1,…,yk)

or
P(x1,…,xn) ← R(x1,…,xn,_,….,_)

Lecture 17 16

Selection

• Simple case: all conditions in the selection are connected
by AND, for example σAge > 18 AND Address = “London” (Person)

Answer(x,y,z,u) ← Person(x,y,z,u) AND y > 18 AND z =
“London”

• If conditions are connected with OR, need more than one
rule. For example, σAge > 18 OR Address = “London” (Person)

Answer(x,y,z,u) ← Person(x,y,z,u) AND y > 18
Answer(x,y,z,u) ← Person(x,y,z,u) AND z = “London”

Lecture 17 17

Compound queries

• To translate an arbitrary algebraic expression, create a new
predicate for every node in the query tree.

• For example, to do σ Name1 = Name2 (R × P):
– Define predicate S = R × P
– Define σ Name1 = Name2 (S)

Lecture 17 18

Recursion: motivating example

• Consider a database for London underground.
• It describes lines, stations, station closures etc. (there may

be stations closed on weekends, or because of technical
problems or strikes).

• Typical queries include:
– is it possible to go from King’s Cross to Embankment?
– which lines can be reached form King’s Cross?

4

Lecture 17 19

Motivating example

• We can either compute and store this information for every
station (recompute it every day because of station closures)

• Or, we can store the basic data (Links relation below) and
compute answers to queries as they are asked.

Line Station Next Station

Central Marble Arch Bond St
Jubilee Bond St Green Park
Victoria Green Park Victoria
Victoria Victoria Pimlico

Links

Lecture 17 20

Motivating example

• However, in a relational database, given a relation Links,
we cannot express a query “Is Pimlico reachable from
Marble Arch?”.

Line Station Next Station

Central Marble Arch Bond St
Jubilee Bond St Green Park
Victoria Green Park Victoria
Victoria Victoria Pimlico

Links

Lecture 17 21

Recursive queries

• Reachability in a graph is a typical recursive property.
• It cannot be expressed in relational calculus or relational

algebra given an Edge relation for the graph.
• We can write a query which expresses “reachable in one

step”, “reachable in two steps”, and so on, but not simply
“reachable”.

• Another example: given a Parent relation, write a query
which finds ancestors of a given person.

• Again, in relational algebra or calculus we can find
parents, grandparents and so on, but not all ancestors.

Lecture 17 22

Example recursive program

Reachable (x,x) ←
Reachable (x,y) ← Links(u,z,y) AND Reachable (x,z)
• We use the database relation Links to define relation

Reachable, which is not stored in the database.
• To compute the set of stations reachable from King’s

Cross, we add to this program
Answer(y) ← Reachable(“King’s Cross”, y)

Lecture 17 23

Extensional and intensional
predicates
• To distinguish relations which are in the database and

relations which are being defined by Datalog rules:
– Extensional predicates: predicates whose relations are

stored in a database
– Intensional predicates: defined by Datalog rules

• EDB – extensional database – collection of extensional
relations

• IDB – intensional database – collection of intensional
relations

Lecture 17 24

Three ways to give semantics of
recursive Datalog programs
• Minimal relations (minimal models)
• Provability semantics
• Fixpoint semantics
For the time being, assume that we do not have negation on

IDB predicates

5

Lecture 17 25

Minimal relations

• Datalog programs are logical descriptions of new relations.
The answer to the Datalog query is the smallest relation
which satisfies all the stated properties.

• Each rule
R1(xs) ← R2(xs) AND … AND Rn(xs)

• corresponds to a logical property
∀x1...∀xm(R2(xs)&…&Rn(xs)→ R1(xs))

where x1,...,xm are all the variables occurring in the rule and
xs some subsequence of x1,...,xm.

Lecture 17 26

Example

• A program
Ancestor(x,y) ← Parent(x,y)
Ancestor(x,y) ← Parent(x,z) AND Ancestor(z,y)

• corresponds to logical properties
P1 ∀x ∀y (Parent(x,y) → Ancestor(x,y))
P2 ∀x ∀y ∀z(Parent(x,z) & Ancestor(z,y) → Ancestor(x,y))

Lecture 17 27

Example

• Suppose Parent contains just two pairs:
Parent(Anne, Bob), Parent(Bob, Chris)
• Because of P1, Ancestor should contain the same pairs:
Ancestor(Anne, Bob), Ancestor(Bob, Chris)
• Because of P2, we also need to add Ancestor(Anne,Chris)

to satisfy
∀x ∀y ∀z(Parent(x,z) & Ancestor(z,y) → Ancestor(x,y))
Parent(Anne,Bob) & Ancestor(Bob,Chris) →

Ancestor(Anne,Chris))

Lecture 17 28

Programs as proofs

• Proof-theoretic way of looking at Datalog programs:
• for which tuples can we logically prove that they are in

Ancestor relation (using Parent relation and the program
rules).

• Happens to be the same tuples as in the minimal Ancestor
relation.

Lecture 17 29

Fixpoint semantics of programs

• Start assuming that all IDB predicates are empty.
• Construct larger and larger IDB relations by:

– Fire rules to add a tuples to IDB relations
– Use tuples added to IDB relations in the previous round

to add a new tuples to IDB relations
• Continue firing rules until no new tuples are added

(reached a fixpoint). If rules are safe, there will be finitely
many tuples which satisfy the body of the rule, so fixpoint
will be reached after finitely many rounds.

• This happens to give the same answer as “what is the
minimal relation satisfying the properties” and “for which
tuples can we prove that they are in Ancestor relation”.

Lecture 17 30

Example: fixpoint construction

Ancestor(x,y) ← Parent(x,y)
Ancestor(x,y) ← Parent(x,z), Ancestor(z,y)
• Start: Ancestor = {}, Parent={<a,b>,<b,c>,<c,d>}
• 1st round: Ancestor = {<a,b>,<b,c>,<c,d>}
• 2nd round: Ancestor = {<a,b>,<b,c>,<c,d>, <a,c>, <b,d>}
(Ancestor(a,c) ← Parent(a,b), Ancestor(b,c) gives <a,c>
Ancestor(b,d) ← Parent(b,c), Ancestor(c,d) gives <b,d>)
• 3rd round: Ancestor = {<a,b>,<b,c>,<c,d>, <a,c>,<b,d>,
Ancestor(a,d) ← Parent(a,b), Ancestor(b,d) <a,d>}
• 4th round: no new tuples in Ancestor.

6

Lecture 17 31

Negation

• Problem with negation: may not be a unique minimal
solution; no clear semantics.

• Example: EDB = {R} and IDB = {P,Q}
P(x) ← R(x) AND NOT Q(x)
Q(x) ← R(x) AND NOT P(x)
Suppose R = {<a>}. Then either

– P = {<a>} and Q empty, or
– Q = {<a>} and P empty.

No unique solution. Can’t say if P(a) holds or Q(a) holds.

Lecture 17 32

Stratified Datalog with negation

• The idea is to break cycles as in the example before, when
to evaluate IDB predicate P we need to know what is the
negation of IDB predicate Q, and vice versa (P is defined
using NOT Q and Q is defined using NOT P).

• Solution: outlaw cycles in dependencies on negative IDB
predicates.

Lecture 17 33

What does “depend” mean

• If R is the head of a rule where P is in the body, R depends
on P

• If R is the head of a rule where P is in the body, and P
depends on S, then R depends on S (transitive relation).

• We draw a dependency graph for IDB predicates.

Lecture 17 34

What does “depend” mean

• (Only IDB predicates are shown, E assumed to be an EDB
predicate). R depends on P, S, Q, T and V; P depends on S;
Q depends on V and T; V depends on T and Q, and T
depends on Q and V

R

P
Q

−

V

−

S

−

T

R(x) ← P(x) AND NOT Q(x)

Q(x) ← NOT V(x) AND E(x)

P(x) ← NOT S(x) AND E(x)

V(x) ← T(x)

T(x) ← Q(x)

Lecture 17 35

What does “depend” mean

• Negative arcs (with − sign) correspond to negative
occurrences of predicates in the body of the rule

• Recursion is stratified if there is no cycle involving
negative arcs. (The program below is not stratified)

R

P
Q

−

V

−

S

−

T
bad cycle

R(x) ← P(x) AND NOT Q(x)

Q(x) ← NOT V(x) AND E(x)

P(x) ← NOT S(x) AND E(x)

V(x) ← T(x)

T(x) ← Q(x)
Lecture 17 36

Strata

• In a stratified program, IDB predicates are divided into
strata.

• Stratum of a predicate is the maximal number of negative
arcs on a dependency path starting at that predicate.

R

P
Q

−

V

−

S

−

R(x) ← P(x) AND NOT Q(x)

Q(x) ← NOT V(x) AND E(x)

P(x) ← NOT S(x) AND E(x)

7

Lecture 17 37

Example

• The program below is stratified.
• Stratum 0 = {S, V}
• Stratum 1 = {P, Q}
• Stratum 2 = {R}

R

P
Q

−

V

−

S

−

R(x) ← P(x) AND NOT Q(x)

Q(x) ← NOT V(x) AND E(x)

P(x) ← NOT S(x) AND E(x)

Lecture 17 38

In other words

• stratum 0: do not depend on any negated IDB predicates
• stratum 1: depend on negated IDB predicates from stratum

0;
• stratum 2: depend on negated IDB predicates from stratum

1,
• …
• stratum n: depend on IDB predicates from stratum n-1.

Lecture 17 39

Evaluating stratified Datalog
programs
• Stratified Datalog programs have the following operational

semantics:
– First compute all IDB predicates in stratum 0 (using the

usual fixpoint strategy)
– …
– Using IDB predicates from stratum n, compute IDB

predicates from stratum n+1.
• This produces unique minimal solutions for all IDB

predicates.

Lecture 17 40

Informal coursework

• Is the following program stratified (EDB = {S}):
Q(x) ← NOT P(x) AND R(x)
P(x) ← NOT R(x) AND S(x)
R(x) ← S(x)

• Is the following program stratified (EDB = {S}):
R(x) ← Q(x)
Q(x) ← R(x)
R(x) ← S(x) AND NOT Q(x)

• For the stratified program, compute P, Q and R given that
S contains {<a>,}.

Lecture 17 41

Informal coursework

• A database of fictitious company contains three relations:
– GOODS over schema {Producer, ProductCode,

Description}
– DELIVERY over schema {Producer, ProductCode,

Branch#, Stock#}
– STOCK over schema {Branch#, Stock#, Size, Colour,

SellPrice, CostPrice, DateIn, DateOut}.

Lecture 17 42

Define in Datalog

• Query 1: find all producers who supply goods.
• Query 2: find all producers who have delivered goods to

any branch of the company.
• Query 3: find SellPrice and CostPrice of all goods

delivered to branch L1 still in stock (here, L1 is a value in
the attribute domain of Branch#, and products in stock
have value InStock for the DateOut attribute).

• Query 4: find Producer, ProductCode, Description for all
goods sold at the same day they arrived at any branch.

• Query 5: find Branch#, Size, Colour, SellPrice for all
dresses which have not yet been sold (dress is a value in
the attribute domain of Description).

8

Lecture 17 43

Reading

• Ullman, Widom, chapter 10
• Abiteboul, Hull, Vianu chapter 12.

