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Plan of the lecture

• More Datalog: 
– Safe queries
– Datalog and relational algebra

• Recursive Datalog rules
• Semantics of recursive Datalog rules
• Problems with negation
• Stratified Datalog
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Datalog syntax: rules

• A Datalog rule is an expression of the form
R1 ← R2 AND … AND Rn

where n ≥ 1, R1 is a relational atom, and R2,…, Rn are 
relational or arithmetic atoms, possibly preceded by NOT.

• R1 is called the head of the rule and R2,…, Rn the body of 
the rule.

• R2,…, Rn are called subgoals.
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Example

• Suppose we have a relation Person over schema (Name, 
Age, Address, Telephone). Then the following Datalog 
rule will define a relation which contains names of people 
aged over 18:

Adult(x)  ← Person(x,y,z,u) AND y ≥ 18
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Datalog query

• A Datalog query is a finite set of Datalog rules
• If there is only one relation which appears as a head of a  

rule in the query, the tuples in that relation are taken as the 
answer to the query.

• For example,
Parent(x,y) ← Mother(x,y)
Parent(x,y) ← Father(x,y)

defines Parent relation (using relations Father and Mother)
• If there is more than one relation appearing as a head, one 

of them is the main predicate to be defined and others are 
auxiliary.
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Meaning of Datalog rules

• First approximation (non-recursive queries):
– take the values of variables which make the body of the 

rule true (make each subgoal true; NOT R is true if R is 
false)

– see what values the variables of the head take; 
– add the resulting tuple to the predicate in the head of 

the rule.
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Example with negation

• Suppose we have a relation Person over schema (Name, 
Age, Address, Telephone). 

Child(x)  ← Person(x,y,z,u) AND NOT(y ≥ 18)
• We take all <name, age, addr, tel> in Person for which it is 

also true that NOT(age ≥ 18), and add <name> to Child.
• NOT(age ≥ 18) is true if age ≥ 18 is false, so we add all 

tuples where age < 18.
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Safe queries

• We want the result of a query to be a finite relation.
• To ensure this, the following safety condition is required:
every variable that appears anywhere in the rule must 

appear in some non-negated relational subgoal.
• The reason for this is that infinitely many values may 

satisfy an arithmetical subgoal (e.g. x > 0) and infinitely 
many values are NOT in some finite table of a relation R.
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Questions

• Which of the following rules have safety violations:
– P(x,y) ← Q(x,y) AND NOT R(x,y)
– P(x,y) ← NOT Q(x,y) AND y = 10
– P(x,y) ← Q(x,z) AND NOT R(w,x,z) AND x < y
– P(x,y) ← Q(x,z) AND R(z,y) AND NOT Q(x,y)
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Questions

• Which tuples are in P?
P(x,y) ← Q(x,z) AND R(z,y) AND NOT Q(x,y)

given that:
Q contains tuples <a,b>, <a,c>
R contains tuples <b,c>, <c,a>
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Datalog and relational algebra

• Every relation definable in relational algebra is definable 
in Datalog.

• Again we assume that we have a relational name (predicate 
symbol) R for every basic relation R.

• Then for every operation of relational algebra, we show 
how to write a corresponding Datalog query.
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Union

• Union of R and S:

U(x1,…,xn) ← R(x1,…,xn)
U(x1,…,xn) ← S(x1,…,xn)
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Difference

• Difference of R and S:

D(x1,…,xn) ← R(x1,…,xn) AND NOT S(x1,…,xn)
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Product

• Product of R and S:

P(x1,…,xn,y1,…,yk) ← R(x1,…,xn) AND S(y1,…,yk) 
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Projection

• Suppose we want to project R on attributes x1,…,xn.

P(x1,…,xn) ← R(x1,…,xn,y1,…,yk)

or
P(x1,…,xn) ← R(x1,…,xn,_,….,_)
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Selection

• Simple case: all conditions in the selection are connected 
by AND, for example σAge > 18 AND Address = “London” (Person)

Answer(x,y,z,u) ← Person(x,y,z,u) AND y > 18 AND z = 
“London”

• If conditions are connected with OR, need more than one 
rule. For example, σAge > 18 OR Address = “London” (Person)

Answer(x,y,z,u) ← Person(x,y,z,u) AND y > 18
Answer(x,y,z,u) ← Person(x,y,z,u) AND z = “London”
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Compound queries

• To translate an arbitrary algebraic expression, create a new 
predicate for every node in the query tree.

• For example, to do σ Name1 = Name2 (R × P):
– Define predicate S = R × P
– Define σ Name1 = Name2 (S)
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Recursion: motivating example

• Consider a database for London underground.
• It describes lines, stations, station closures etc. (there may 

be stations closed on weekends, or because of technical 
problems or strikes).

• Typical queries include:
– is it possible to go from King’s Cross to Embankment?
– which lines can be reached form King’s Cross?
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Motivating example

• We can either compute and store this information for every 
station (recompute it every day because of station closures)

• Or, we can store the basic data (Links relation below) and 
compute answers to queries as they are asked.

Line Station Next Station

Central Marble Arch Bond St
Jubilee Bond St Green Park
Victoria Green Park Victoria
Victoria Victoria Pimlico

Links
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Motivating example

• However, in a relational database, given a relation Links, 
we cannot express a query “Is Pimlico reachable from 
Marble Arch?”. 

Line Station Next Station

Central Marble Arch Bond St
Jubilee Bond St Green Park
Victoria Green Park Victoria
Victoria Victoria Pimlico

Links
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Recursive queries

• Reachability in a graph is a typical recursive property.
• It cannot be expressed in relational calculus or relational 

algebra given an Edge relation for the graph.
• We can write a query which expresses “reachable in one 

step”, “reachable in two steps”, and so on, but not simply 
“reachable”.

• Another example: given a Parent relation, write a query 
which finds ancestors of a given person.

• Again, in relational algebra or calculus we can find 
parents, grandparents and so on, but not all ancestors.
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Example recursive program

Reachable (x,x)  ←
Reachable (x,y)  ← Links(u,z,y) AND Reachable (x,z)
• We use the database relation Links to define relation 

Reachable, which is not stored in the database.
• To compute the set of stations reachable from King’s 

Cross, we add to this program
Answer(y) ← Reachable(“King’s Cross”, y)
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Extensional and intensional
predicates
• To distinguish relations which are in the database and 

relations which are being defined by Datalog rules:
– Extensional predicates: predicates whose relations are 

stored in a database
– Intensional predicates: defined by Datalog rules

• EDB – extensional database – collection of extensional 
relations

• IDB – intensional database – collection of intensional
relations
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Three ways to give semantics of 
recursive Datalog programs
• Minimal relations (minimal models)
• Provability semantics
• Fixpoint semantics
For the time being, assume that we do not have negation on 

IDB predicates 
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Minimal relations

• Datalog programs are logical descriptions of new relations. 
The answer to the Datalog query is the smallest relation 
which satisfies all the stated properties.

• Each rule 
R1(xs)  ← R2(xs) AND … AND Rn(xs)

• corresponds to a logical property 
∀x1...∀xm(R2(xs)&…&Rn(xs )→ R1(xs))

where x1,...,xm are all the variables occurring in the rule and 
xs some subsequence of x1,...,xm.
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Example

• A program
Ancestor(x,y) ← Parent(x,y)
Ancestor(x,y) ← Parent(x,z) AND Ancestor(z,y)

• corresponds to logical properties
P1 ∀x ∀y (Parent(x,y) → Ancestor(x,y))
P2 ∀x ∀y ∀z(Parent(x,z) & Ancestor(z,y)  → Ancestor(x,y))
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Example

• Suppose Parent contains just two pairs: 
Parent(Anne, Bob), Parent(Bob, Chris)
• Because of P1, Ancestor should contain the same pairs:
Ancestor(Anne, Bob), Ancestor(Bob, Chris)
• Because of P2, we also need to add Ancestor(Anne,Chris) 

to satisfy
∀x ∀y ∀z(Parent(x,z) & Ancestor(z,y) → Ancestor(x,y))
Parent(Anne,Bob) & Ancestor(Bob,Chris) →

Ancestor(Anne,Chris))
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Programs as proofs

• Proof-theoretic way of looking at Datalog programs: 
• for which tuples can we logically prove that they are in 

Ancestor relation (using Parent relation and the program 
rules).

• Happens to be the same tuples as in the minimal Ancestor 
relation.
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Fixpoint semantics of programs

• Start assuming that all IDB predicates are empty.
• Construct larger and larger IDB relations by: 

– Fire rules to add a tuples to IDB relations
– Use tuples added to IDB relations in the previous round 

to add a new tuples to IDB relations 
• Continue firing rules until no new tuples are added 

(reached a fixpoint). If rules are safe, there will be finitely 
many tuples which satisfy the body of the rule, so fixpoint
will be reached after finitely many rounds.

• This happens to give the same answer as “what is the 
minimal relation satisfying the properties” and “for which 
tuples can we prove that they are in Ancestor relation”.
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Example: fixpoint construction

Ancestor(x,y) ← Parent(x,y)
Ancestor(x,y) ← Parent(x,z), Ancestor(z,y)
• Start: Ancestor = {}, Parent={<a,b>,<b,c>,<c,d>}
• 1st round: Ancestor = {<a,b>,<b,c>,<c,d>}
• 2nd round: Ancestor = {<a,b>,<b,c>,<c,d>, <a,c>, <b,d>}
(Ancestor(a,c) ← Parent(a,b), Ancestor(b,c)  gives  <a,c>
Ancestor(b,d) ← Parent(b,c), Ancestor(c,d) gives  <b,d>)
• 3rd round: Ancestor = {<a,b>,<b,c>,<c,d>, <a,c>,<b,d>,
Ancestor(a,d) ← Parent(a,b), Ancestor(b,d)  <a,d>}
• 4th round: no new tuples in Ancestor.
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Negation

• Problem with negation: may not be a unique minimal 
solution; no clear semantics.

• Example: EDB = {R} and IDB = {P,Q}
P(x) ← R(x) AND NOT Q(x)
Q(x) ← R(x) AND NOT P(x)
Suppose R = {<a>}. Then either 

– P = {<a>} and Q empty, or 
– Q = {<a>} and P empty. 

No unique solution. Can’t say if P(a) holds or Q(a) holds.
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Stratified Datalog with negation

• The idea is to break cycles as in the example before, when 
to evaluate IDB predicate P we need to know what is the 
negation of IDB predicate Q, and vice versa (P is defined 
using NOT Q and Q is defined using NOT P).

• Solution: outlaw cycles in dependencies on negative IDB 
predicates.
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What does “depend” mean

• If R is the head of a rule where P is in the body, R depends 
on P

• If R is the head of a rule where P is in the body,  and P 
depends on S, then R depends on S (transitive relation).

• We draw a dependency graph for IDB predicates.
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What does “depend” mean

• (Only IDB predicates are shown, E assumed to be an EDB 
predicate). R depends on P, S, Q, T and V; P depends on S; 
Q depends on V and T; V depends on T and Q, and T 
depends on Q and V

R

P
Q

−

V

−

S

−

T

R(x) ← P(x) AND  NOT Q(x)

Q(x) ← NOT V(x) AND E(x) 

P(x) ← NOT S(x) AND E(x)

V(x) ← T(x)

T(x) ← Q(x)
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What does “depend” mean

• Negative arcs (with − sign) correspond to negative 
occurrences of predicates in the body of the rule

• Recursion is stratified if there is no cycle involving 
negative arcs. (The program below is not stratified)

R

P
Q

−

V

−

S

−

T
bad cycle

R(x) ← P(x) AND  NOT Q(x)

Q(x) ← NOT V(x) AND E(x) 

P(x) ← NOT S(x) AND E(x)

V(x) ← T(x)

T(x) ← Q(x)
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Strata

• In a stratified program, IDB predicates are divided into 
strata. 

• Stratum of a predicate is the maximal number of negative 
arcs on a dependency path starting at that predicate.

R

P
Q

−

V

−

S

−

R(x) ← P(x) AND  NOT Q(x)

Q(x) ← NOT V(x) AND E(x) 

P(x) ← NOT S(x) AND E(x)
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Example

• The program below is stratified.
• Stratum 0 = {S, V}
• Stratum 1 = {P, Q}
• Stratum 2 = {R}

R

P
Q

−

V

−

S

−

R(x) ← P(x) AND  NOT Q(x)

Q(x) ← NOT V(x) AND E(x) 

P(x) ← NOT S(x) AND E(x)
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In other words

• stratum 0: do not depend on any negated IDB predicates
• stratum 1: depend on negated IDB predicates from stratum 

0;
• stratum 2: depend on negated IDB predicates from stratum 

1, 
• …
• stratum n: depend on IDB predicates from stratum n-1.
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Evaluating stratified Datalog 
programs
• Stratified Datalog programs have the following operational 

semantics:
– First compute all IDB predicates in stratum 0 (using the 

usual fixpoint strategy)
– …
– Using IDB predicates from stratum n, compute IDB 

predicates from stratum n+1.
• This produces unique minimal solutions for all IDB 

predicates.
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Informal coursework

• Is the following program stratified (EDB = {S}):
Q(x) ← NOT P(x) AND R(x)
P(x)  ← NOT R(x) AND S(x)
R(x)  ← S(x) 

• Is the following program stratified (EDB = {S}):
R(x)  ← Q(x)
Q(x)  ← R(x)
R(x)  ← S(x) AND NOT Q(x) 

• For the stratified program, compute P, Q and R given that 
S contains {<a>,<b>}.
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Informal coursework

• A database of fictitious company contains three relations:
– GOODS over schema {Producer, ProductCode, 

Description}
– DELIVERY over schema {Producer, ProductCode, 

Branch#, Stock#}
– STOCK over schema {Branch#, Stock#, Size, Colour, 

SellPrice, CostPrice, DateIn, DateOut}.
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Define in Datalog

• Query 1: find all producers who supply goods.
• Query 2: find all producers who have delivered goods to 

any branch of the company.
• Query 3: find SellPrice and CostPrice of all goods 

delivered to branch L1 still in stock (here, L1 is a value in 
the attribute domain of Branch#, and products in stock 
have value InStock for the DateOut attribute).

• Query 4: find Producer, ProductCode, Description for all 
goods sold at the same day they arrived at any branch.

• Query 5: find Branch#, Size, Colour, SellPrice for all 
dresses which have not yet been sold (dress is a value in 
the attribute domain of Description).
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Reading

• Ullman, Widom, chapter 10
• Abiteboul, Hull, Vianu chapter 12.


